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 In this paper, the responses of mechanical and electrical oscillators are obtained 
by the application of a novel integral transform called Gupta Transform. This 
paper proposed the Gupta Transform as a novel approach for analyzing the 
mechanical and electrical oscillators. Like other integral Transforms or methods 
or approaches, the Gupta Transform would also present a simple and effective 
mathematical tool for obtaining the responses of mechanical and electrical 
oscillators. 
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I. INTRODUCTION 

This paper discusses the theory of mechanical and 
electrical oscillators to obtain their responses by the 
application of new integral transform called Gupta 
Transform. It was propounded recently by the authors 
Rohit Gupta and Rahul Gupta. The authors applied the 
Gupta Transform to the initial value problems in Science 
and Engineering [1]. Generally, the Mechanical and 
electrical oscillators have been analyzed by the calculus 
method [2], [3] or matrix method [4] or Laplace Transform 
[5]. This paper proposed the Gupta Transform as a novel 
approach for finding out the responses of mechanical and 
electrical oscillators.       

I. GUPTA TRANSFORM 
Let g(y) is a continuous function on any interval for y ≥ 0. 
The Gupta Transform of g(y) is defined as [1] 

, provided 

that the integral is convergent, where may be a real or 

complex parameter and  is the Gupta Transform 

operator. 
The Gupta Transform of some elementary functions [1] are  

  

  

  

  

  

  

  

 

Inverse Gupta Transform of Elementary Functions  
 
The inverse Gupta Transform of the function [1] G(r) is 

denoted by -1{G (r)} or g (y).  

If we write  {g (y)} = G (r), then -1{G (r)} = g (y), where 

-1 is called the inverse Gupta Transform operator. 

The Inverse Gupta Transform of some elementary 
functions [1] are given below 
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Gupta Transform of derivatives 
Let g(y) is continuous function and is piecewise 
continuous on any interval, then the Gupta Transform of 

first derivative [1] of g(y) i.e.  is given by                                      

 
Integrating by parts and applying limits, we get 

 

=

 

 

Hence 

 

Since   

Therefore, on 

replacing g(y) by  and , we have 

 

 

 

 

Hence  

 

And so on. 
 
 
 
 
 

II. MATERIAL AND METHOD 
 
SIMPLE HARMONIC OSCILLATOR 
The differential equation of simple harmonic oscillator [2, 
5] is given by 

 …. (1),  

 is the natural frequency of the oscillator.  

We assume: 
(i) At t = 0, x (0) = 0. 
(ii) Also, at t = 0, the velocity of the simple harmonic 

oscillator i.e. . 

The Gupta Transform of (1) provides 

= 0… (2) 

Here G (q) denotes the Gupta Transform of  

Put  and   and simplifying (2), we get 

 

….. (3) 

Applying inverse Gupta Transform, we get 

=   .. (4) 

This equation shows that the motion of a simple harmonic 
oscillator is oscillatory with constant amplitude. 
 

DAMPED MECHANICAL OSCILLATOR 

The differential equation of damped Mechanical oscillator 
[4], [5] is given by 

 …. (5),  

 is the damping constant per unit mass,  

is the natural frequency of the oscillator. For a light 
damping  

We assume [4], [5]: 
i. At t = 0, x (0) = 0. 
ii. Also, at t = 0, the velocity of the damped 

mechanical oscillator i.e. . 

The Gupta transform of (1) provides 

= 0… (6) 
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Here G (q) denotes the Gupta transform of  

Put  and   and simplifying (6), we get 

 

 

Or  

 

. 

Or 

  =  

Applying inverse Gupta Transform, we get 

=  

Or  

=   

Or 

=  …. (7) 

This equation shows that the motion of a lightly damped 
oscillator is oscillatory with decreasing amplitude. 
 

For an overdamped oscillator [6],  therefore, 

replacing by in (7), the 

displacement of an overdamped oscillator is given by 

=   

Or 

=  .... (8) 

This equation shows that the motion of a heavily damped 
oscillator is non-oscillatory. 
 
DAMPED ELECTRICAL OSCILLATOR 
 
The differential equation of electrical oscillator (LRC 
circuit) [8], [9] is given by 

 …. (9), where 

is the angular frequency of the electrical 

oscillator,   is the damping coefficient. is the 

charge at any instant. 
We assume [10]: 

(i) At t = 0,    Q (0) = 0 
(ii) Also, at t = 0, the current in the circuit 

i.e.  

The Gupta Transform of (9) provides 

= 0…(10) 

Here G (q) denotes the Gupta transform of  

Put  and   and simplifying (10), we 
get 
 

 

Or  

 

Or 

  =  

Applying inverse Gupta Transform, we get 

=    

Or  

=   

Or 

=  …. (11) 

 

This equation shows that the behaviour of oscillator 
(charge) is oscillatory with the amplitude of oscillations 
decreases with time exponentially. The decrease in 
amplitude i.e. damping depends upon resistance R in the 
circuit. Such damping is called resistance damping [8]. If R 
= 0, the amplitude would remain constant. Hence in the 
LRC circuit, the resistance is the only dissipative element. 
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III. CONCLUSION 
In this paper, the responses of mechanical and electrical 
oscillators has been successfully obtained by the 
application of a new integral transform called Gupta 
Transform and proposed the Gupta Transform for 
discussing the theory of a mechanical and electrical 
oscillators. A novel and different method have been 
exploited for obtaining the responses of mechanical and 
electrical oscillators. 
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