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 A robot is a machine able to extract information from its environment and use 
knowledge about its world to move safely in a meaningful and purposive 
manner. We will focus primarily on autonomous robots, robots that can operate 
on their own without a human directly controlling them. Robots are physical 
agents that perform tasks by manipulating the physical world. They are 
equipped with sensors to perceive their environment and effectors to assert 
physical forces on it. The first industrial robot using these principles was 
installed in 1961. These are the robots one knows from industrial facilities like 
car construction plants. Autonomous robot applications are couriers in 
hospitals, security guards and lawn mowers. Probably the most important 
application is the use of autonomous mobile robots in hazardous environments 
like minefields or the inside of nuclear plants. For the purpose of this overview, 
we found it clarifying to distinguish these functions with respect to their main 
role and computational requirements: the perceiving, goal reasoning, planning, 
acting and monitoring functions. 
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INTRODUCTION 
The Robot Institute of America defines a robot as “a 
programmable, multi-function manipulator designed to 
move material, parts, tools or specific devices through 
variable programmed motions for the performance of a 
variety of tasks” [1-3]. Another definition describes robots 
as “the intelligent connection of perception to action” [4]. 
Both definitions are not very precise. The first does not 
include mobile robots and the second includes humans. 
However, the second definition points out two very 
important aspects in robotic systems: perception and 
action. In this study we will use the following definition.  

A robot is a machine able to extract information from its 
environment and use knowledge about its world to move 
safely in a meaningful and purposive manner. We will 
focus primarily on autonomous robots, robots that can 
operate on their own without a human directly controlling 
them. Robots are physical agents that perform tasks by 
manipulating the physical world. They are equipped with 
sensors to perceive their environment and effectors to 
assert physical forces on it (covered in more detail in next 
section). As mentioned before Robots can be put into three 
main categories: manipulators, mobile robots and 
humanoid robots [3-6]. 
Capek and his Robots: The term "Robot" can be traced 
back to Karel Capek’s play "R.U.R. Rossum’s universal 
robots" (in 1921) that comes from the Czech word for 
"corvee" [4-8]. 
 

A brief History of Robots 
Robotics is based on two enabling technologies: Tele-
manipulators and the ability of numerical control of 
machines.  
Tele-manipulators are remotely controlled machines 
which usually consist of an arm and a gripper. The 
movements of arm and gripper follow the instructions the 
human gives through his control device. First tele-
manipulators have been used to deal with radio-active 
material.  
Numeric control allows controlling machines very 
precisely in relation to a given coordinate system. It was 
first used in 1952 at the MIT and lead to the first 
programming language for machines (called APT: 
Automatic Programmed Tools). 
The combination of both of these techniques leads to the 
first programmable tele-manipulator. The first industrial 
robot using these principles was installed in 1961. These 
are the robots one knows from industrial facilities like car 
construction plants. The development of mobile robots 
was driven by the desire to automate transportation in 
production processes and autonomous transport systems. 
Since a few years wheel-driven robots are commercially 
marketed and used for services like "Get and Bring" (for 
example in hospitals). Humanoid robots are being 
developed since 1975 when Wabot-I was presented in 
Japan. The current Wabot-III already has some minor 
cognitive capabilities [9-14]. 

http://albertscience.com/journals/detail/8
http://www.albertscience.com/
http://dids.info/indexs/?issn=&didsno=01.2016-19818151&submit=Search
http://dids.info/didslink/01.2016-31249265/
mailto:sonamde2512@gmail.com


 Sonam De / ASIO Journal of Engineering & Technological Perspective Research (ASIO-JETPR), 2015, 1(1): 01-05 

 

dids no.: 01.2016-19818151, dids Link:  http://dids.info/didslink/01.2016-31249265/ 
 

P
ag

e
2

 

Another humanoid robot is "Cog", developed in the MIT-
AI-Lab since 1994. Honda’s humanoid robot became well 
known in the public when presented back in 1999. 
Although it is remote controlled by humans it can walk 
autonomously (on the floor and stairs). In science fiction 
robots are already human’s best friend but in reality we 
will only see robots for specific jobs as universal 
programmable machine slave in the near future [12]. 
 

Robotics and AI 
Artificial intelligence is a theory. The base object is the 
agent who is the "actor". It is realized in software. Robots 
are manufactured as hardware. The connection between 
those two is that the control of the robot is a software 
agent that reads data from the sensors decides what to do 
next and then directs the effectors to act in the physical 
world [6-9]. 
 

Tasks 
The first industrial robots [7-12], developed in the late 
1950s by George Engelberger and George Devol, were used 
to automate repetitive tasks in manufacturing and material 
handling. These industrial robots were very simple and 
even today most manufacturing robots are not very 
intelligent. Tasks for robots that are used nowadays vary 
from transporting containers on and off ships to shaving 
sheep and milking cows. 
Although autonomous robots were already invented in the 
1960s, it is not until recently that robots are used for 
practical purposes. Autonomous robot applications are 
couriers in hospitals, security guards and lawn mowers. 
Probably the most important application is the use of 
autonomous mobile robots in hazardous environments 
like minefields or the inside of nuclear plants. During the 
cleanup of the Chernobyl disaster, several Russian lunar 
explorer robots were used as cleaning vehicles and in 
1997 the mobile robot Sojourner landed on Mars to 
explore the surface. 
 

Deliberation refers to purposeful, chosen or planned 
actions, carried out in order to achieve some objectives. 
Many robotics applications do not require deliberation 
capabilities, e.g., xed robots in manufacturing and other 
well-modeled environments; vacuum cleaning and other 
devices limited to a single task; surgical and other tele-
operated robots. Deliberation is a critical functionality for 
an autonomous robot facing a variety of environments and 
a diversity of tasks [7-12]. 
 Planning:  
It combines prediction and search to synthesize a 
trajectory in an abstract action space, using predictive 
models of feasible actions and of the environment. 
 Acting:  
It implements on-line close-loop feedback functions that 
process streams of sensors stimulus to actuators 
commands in order to rene and control the achievement of 
planned actions. 
  Perceiving:  
It extracts environment features to identify states, events, 
and situations relevant for the task. It combines bottom-up 
sensing, from sensors to meaningful data, with top-down 
focus mechanisms, sensing actions and planning for 
information gathering. 
 

 Monitoring:  
It compares and detects discrepancies between 
predictions and observations, performs diagnosis and 
triggers recovery actions. 
 Goal reasoning: 
It keeps current commitments and goals into perspective, 
assessing their relevance given observed evolutions, 
opportunities, constraints or failures, deciding about 
commitments to be abandoned, and goals to be updated. 
 

Parts 
Robots are distinguished from each other by the effectors 
and sensors with which they are equipped. For example, a 
mobile robot requires legs or wheels, and a tele-operated 
robot needs a camera. We will assume that a robot has 
some sort of rigid body, with rigid links that can move 
about. Links meet each other at joints, which allow 
motion. Examples of links are the arms or wheels of a 
robot. 
Attached to the final links are end effectors, used by the 
robot to interact with the world. End effectors can be 
squeeze grippers, screwdrivers, welding guns, paint 
sprayers, etc. 
 

Effectors 
An effector [8-11] is any device under the control of the 
robot that affects the environment. Effectors are used in 
two ways: to change the position of the robot within its 
environment (locomotion) and to move other objects in 
the environment (manipulation). To have an impact on the 
physical world, effectors must be equipped with an 
actuator that converts software commands into physical 
motion. 
The actuators themselves are electric motors or hydraulic 
or pneumatic cylinders. The correspondence between the 
actuator motions in a mechanism and the resulting motion 
in its various parts can be described with kinematics, the 
study of motion.  
For simplicity, we will assume that each actuator 
determines one single motion or degree of freedom. The 
number of degrees of freedom that a robot possesses is the 
number of independent position variables that would have 
to be specified in order to locate all parts of the robot. For 
example a car-like robot has three degrees of freedom, two 
for its x, y-position, and one for the direction it is facing. 
However, there are only two actuators, namely driving and 
steering. Because the number of controllable degrees of 
freedom (two) is less than the total degrees of freedom 
(three), this is a non-holonomic robot. In general, a non-
holonomic robot is limited in its movement, in this case 
sideways. Robots that are not non-holonomic are 
holonomic robots, i.e. the number of total and controllable 
degrees of freedom is the same. A truly holonomic robot 
can be treated as a mass less point and is capable of 
moving in any direction instantaneously. Obviously, it is 
very difficult, if not impossible, to build a robot that 
behaves like a true holonomic robot. 
Sensors 
One of the most important parts of a robot is its sensors. 
Sensors provide feedback to the robot about its current 
condition and allow a robot to reason about the 
environment. Many different types of sensors have been 
developed [9-12]. 
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Proprioception 

Like humans, robots have proprioceptive sense that tells 
them where their joints are. Encoders fitted to the joints 
provide very accurate data about joint angles. Wheel 
encoders measure the revolution of the robot’s wheels. 
Based on their measurement, odometry can provide an 
estimate of the robot’s location that is very accurate when 
expressed relative to the robot’s previous location. This 
localization technique is called dead reckoning. 
Unfortunately, because of slippage as the robot moves, the 
position error from wheel motion increases. 
Other proprioceptive sensors are accelerometers to detect 
changes in velocity and a magnetic compass or gyroscope 
system to measure orientation [10-13]. 

Force sensing 

Force can be regulated to some extent by controlling 
electric motor current, but accurate control requires a 
force sensor. Force sensors are usually placed between the 
manipulator and end effector and can sense forces and 
torques in different directions [8-10]. 

Tactile sensing 

Tactile sensing is the robotic version of the human sense of 
touch. A robot's tactile sensor uses an elastic material and 
sensing scheme that measures the distortion of the 
material under contact. By understanding the physics of 
the deformation process, it is possible to derive algorithms 
that can compute position information for the objects that 
the sensor touches. Most tactile sensors can also sense 
vibration [9-11]. 

Sonar 

Sonar stands for sound navigation and Ranging. Sonar 
sensors measure approximate echo distances to nearby 
obstacles. Sonar provides useful information about objects 
very close to the robot and is often used for fast emergency 
collision avoidance. It can also be used to map the robot's 
environment over a larger area. In the latter case, an array 
of a dozen or more sonar sensors is fitted around the 
perimeter of the robot, each pointing in a different 
direction. This array is called a sonar ring [10-12]. 

Sonar works by measuring the time of flight of a sound 
pulse generated by the sensor that reflects on an object. 
The pulse is typically about 50 kHz. The speed of sound is 
about 330 m/s, so the round-trip time delay for an object 1 
meter away is about 6 * 10-3 seconds. Although it is 
possible to measure the time delay very accurately, it is 
very hard to produce reliable and precise data for mapping 
[11-14]. The first problem is beam width. Rather than a 
narrow beam of sound, a typical sensor produces a conical 
beam with a spread of 10 degrees or more. The second 
problem comes from the relatively long wavelength (7 
mm) of the sonar sound. Objects that are very smooth 
relative to this wavelength look shiny or specular to the 
sensor. Sound will only be received back from surfaces of 
objects that are at straight angles to the beam. Objects with 
flat  surfaces  and  sharp  edges reflect  very  little  sound in 

 

 

most directions and will probably not be noticed. This is 
the way stealth aircraft work. Third, after being reflected 
back from a surface, the sound may strike another surface 
and be reflected back to the sensor. The time delay will not 
correspond to a physical object, but to a ‘ghost’ object [14-
17]. 

Vision 

To supplement sonar information, a real-time vision or 
obstacle detection system is often used. As yet, no robot 
performs complete scene recognition. Instead vision is 
used selectively and customized to a specific task or 
problem [16-18]. 
 

Intelligence in robots 

Most Artificial intelligence researchers that study robotics 
are working on mobile robots. Mobile robots pose a unique 
challenge to the Artificial intelligence community, since 
they are inherently autonomous and force the researcher 
to deal with issues such as uncertainty in sensing and 
action, planning, learning, reliability, and real-time 
response. By improving and expanding the knowledge of 
how to successfully integrate these issues into one single 
system, fundamental contributions can be made to 
Artificial intelligence research [18-22]. 
 

The development of autonomous robots 

One of the first mobile robots, Shakey, was constructed in 
the late 1960s at the Stanford Research Institute [20-23]. 
The robot used the STRIPS planning system, two 
independently controlled stepper motors and had a 
television camera and optical range finder mounted at the 
top. Shakey demonstrated that general-purpose planning 
systems were not very efficient and much to slow for 
practical use. Further research focused on faster 
processing and higher efficiency. 

In the mid 1980s many researchers began to question the 
‘classical’ planning view of intelligent agent and robot 
design and started working on situated automata, finite-
state-machines whose inputs are directly linked to the 
outputs (reflex agent). The robot Flakey that was based on 
the situated automata theory performed well and even 
won second place in the First American Association for 
Artificial Intelligence (AAAI) robot competition and 
exhibition held in San Jose in 1992 [20-25]. 

In 1986, Rodney Brooks published his paper [Brooks 
1986] on the subsumption architecture, a robot control 
system based on finite-state-machines, which lead to the 
development of a new approach in robotics called 
behavior-based robotics [20-26]. 

Learning 
The goal of learning in a robot is to prepare it to deal with 
unforeseen situations and circumstances in its 
environment. The fact that even the simplest of animals 
seem to be adaptable suggests that learning must be 
important for survival in the animal world [20-22]. 
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When is learning useful? 
There are two main benefits [22-25] of learning in 
biological systems. First, learning lets the animal adapt to 
different circumstances in the world, giving it a wider 
range of environmental conditions in which it can operate 
effectively. Second, learning reduces the amount of genetic 
material and intermediate structures required for building 
the complete functioning adult animal. In some 
circumstances, it is simpler to build a small structure 
capable of constructing a larger one, than to specify the 
larger structure directly. 
The first aspect of learning in animals directly applies to 
robots as well. We would like our robots to adapt to 
changing external circumstances (e.g. changes in terrain), 
adapt to changing internal circumstances (e.g. drift in 
sensors and actuators, loss of power), and perform new 
tasks when appropriate. The second aspect does not 
transfer directly to robot control, unless they are 
programmed using genetic techniques. 
We can distinguish three types of knowledge that 
would be useful for a robot to acquire [24-26]: 

1. Hard to program knowledge: information that is very 
difficult to program by hand may be obtained by 
showing examples or guiding the robot. 
2. Unknown information: the information necessary to 
program the robot is simply not available. For example, 
a map of the terrain the robot will be   working in. 
3. Changing environments: the world is a dynamic 
place. Even if we had a complete model of the 
environment to begin with, this knowledge could 
quickly become obsolete in a dynamic environment. 
Also slower changes may occur, such as the calibration 
of the robot's own sensors and effectors. 

 
Integration and Architectures 
Beyond the integration of various devices (mechanical, 
electrical, electronical, etc), robots are complex systems 
including multiple sensors, actuators and information 
processing modules. They embed online processing, with 
various real time requirements, from low-level servo loops 
up to deliberation functions which confer the necessary 
autonomy and robustness for the robot to face the 
variability of tasks and environment. The software 
integration of all these components must rely on 
architecture and supporting tools which specify how these 
components communicate, share resources and CPUs, and 
how they are implemented on the host computer(s) and 
operating systems [25-29]. 
 
Various architectures have been proposed to tackle 
this task, among which the following: 
Reactive architectures, e.g. the reactive architecture [10], 
are composed of modules which close the loop between 
inputs (e.g. sensors) and outputs (e.g. effectors) with 
internal automata. These modules can be hierarchically 
organized and can inhibit other modules or weight on their 
activity. They do not rely on any particular model of the 
world or plans to achieve and do not support any explicit 
deliberative activities. Nevertheless, there are a number of 
works, e.g. [29], which rely on them to implement 
deliberative functions. 

Hierarchical architectures are probably the most widely 
used in robotics [23, 26, 29]. They propose an organization 
of the software along layers (two or three) with different 
temporal requirements and abstraction levels. Often, there 
is a functional layer containing the low-level sensors 
effectors processing modules, and a decision layer 
containing some of the deliberation functions presented 
here (e.g. planning, acting, monitoring, etc). 
Teleo-reactive architectures [26] are more recent. They 
propose an integrated planning acting paradigm which is 
implemented at different levels, from deliberation down to 
reactive functions, using different planning acting horizons 
and time quantum. Each planner actor is responsible for 
ensuring the consistency of a constraint network 
(temporal and atemporal) whose state variables can be 
shared with other planner’s actors to provide a 
communication mechanism. 
Beyond architecture paradigms, it is interesting to note 
that some robotics systems have achieved an impressive 
level of integration of numerous deliberation functions on 
real platforms. The Linkoping UAV project [20] provides 
planning, acting, perception, monitoring with formal 
representations all over these components. The NMRA on 
the DS1 probe [24] also proposed planning, acting, and 
FDIR onboard. IDEA and T-ReX, providing planning and 
acting have been used respectively on a robot [26] and an 
AUV [28]. 
 

CONCLUSION 

Autonomous robots facing a variety of open environments 
and a diversity of tasks cannot rely on the decision making 
capabilities of a human designer or tele-operator. To 
achieve their missions, they have to exhibit complex 
reasoning capabilities required to understand their 
environment and current context, and to act deliberately, 
in a purposeful, intentional manner. In this paper, we have 
referred to these reasoning capabilities as deliberation 
functions, closely interconnected within a complex 
architecture. We have presented an overview of the state 
of the art for some of them. 
For the purpose of this overview, we found it clarifying to 
distinguish these functions with respect to their main role 
and computational requirements: the perceiving, goal 
reasoning, planning, acting and monitoring functions. But 
let us insist again: the border line between them is not 
crisp; the rational for their implementation within an 
operational architecture has to take into account 
numerous requirements, in particular a hierarchy of closed 
loops, from the most dynamic inner loop, closest to the 
sensory-motor signals and commands, to the most online" 
outer loop. Consider for example the relationship between 
planning and acting. We argued that acting cannot be 
reduced to execution control", that is the triggering of 
commands mapped to planned actions. There is a need for 
significant deliberation to take place between what is 
planned and the commands achieving it. This acting 
deliberation may even rely on the same or on different 
planning techniques as those of the planner, but it has to 
take into account different state spaces, action spaces and 
event spaces than those of the planner. 
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