An International Publications House

Albert Science International Organization

Connecting People With Pioneering Thought

Albert Science International Organization (ASIO) is international , peer-reviewed , open access , cum print version & online journals.
JOURNALS || ASIO Journal of Chemistry, Physics, Mathematics & Applied Sciences (ASIO-JCPMAS) [ISSN: 2455-7064 ]
ANALYSIS OF FRACTIONAL ORDER SIS EPIDEMIC MODEL WITH CONSTANT RECRUITMENT RATE AND VARIABLE POPULATION SIZE

Author Names : Dr. Sumit Kumar Banerjee
Page No. : 01-04  volume 1 issue 2
Article Overview

ARTICLE DESCRIPTION: 

Dr. Sumit Kumar Banerjee, Analysis of Fractional Order SIS Epidemic Model with Constant Recruitment Rate and Variable Population Size, ASIO Journal of Chemistry, Physics, Mathematics & Applied Sciences (ASIO-JCPMAS), 2016, 1(2): 01-04.

ARTICLE TYPE: Research

dids/doi No.: 03.2016-26169319

dids link:  http://dids.info/didslink/04.2016-73468221/


ABSTRACT:    

In this paper the fractional order SIS epidemic model with constant recruitment rate and variable population size has been studied. Stability analysis of equilibrium points and numerical solution of this model have been shown. Finally numerical simulations have been used to check the validity of the model.

Key words: Epidemic model, Recruitment rate, Stability analysis, Population size, Numerical simulation.                                                          

Reference
  1. W.O. Kermack, A.G. Mckendrick, A contribution to the mathematical theory of epidemics, Proc.Roy.Soc. London Ser., A 115, (1927), 700-721.
  2. Cruz Vargas De Leon, Construction of Lyapunov functions for classics SIS, SIR and SIRS epidemic model with variable population size, (2009), 79-87.
  3. I.Podlubny, Fractional differential equations, Academic press (1999), 8-12.
  4. E.Ahmed, A.M.A. El-Sayed, E. M. El-Mesiry,H. A. A. El-Saka, Numerical solution for the fractional replicator equation, IJMPC, 16 (2005), 1-9.
  5. E.Ahmed, A.M.A. El-Sayed, H.A.A. El-Saka, On some Routh Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen systems, Phys. Lett., A 358 (2006), 118-126.
  6. E.Ahmed, A.M.A. El-Sayed, H.A.A. El-Saka, Equilibrium points, stability and numerical solutions of fractional order predator-prey and rabies models, J. Math. Anal. Appl., 325 (2007), 542-553.
  7. A.M.A. El-Sayed, E.M. El-Mesiry, H.A.A. El-Saka, on the fractional order logistic equation, AML 20 (2007), 817-823.
  8. H.A.A. El-Saka, E. Ahmed, M.I. Shehata, A.M.A. El-Sayed, On stability persistence and Hopf bifurcation in fractional order dynamical systems, Nonlinear Dyn., 56 (2009), 121-126.
  9. H. El-Saka, A. El-Sayed, Fractional order equations and dynamical systems, Lambrt Academic publishing, Germany, (2013), 148-155.
  10. D. Matignon, stability results for fractional differential equations with applications to control processing, Comput. Eng. Syst. Appl., 2 (1996), 272-279.